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INTRODUCTION 
EN~GY transfer by thermal radiation within absorbing and 
emitting media has received considerable attention in 
recent years. Transient radiative transfer processes, however, 
have received only limited consideration. This study is 
concerned with unsteady energy transfer by radiation in a 
stationary plane layer of a non-conducting medium. 
Nemchinov [l] utilized a two-flux model to study transient 
cooling of a layer in the absence of walls while Viskanta and 
Bathla [2] employed an exact formulation to study the 
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same system when the layer is symmetrically heated by an 
external diffuse and collimated radiant flux. The latter 
authors also cite a number of other transient radiative 
transfer studies most of which are concerned with a spherical 
geometry. The present study is distinguished from earlier 
investigations by the presence of walls and unsymmetrical 
boundary conditions. The system with the conditions 
imposed here is analogous to the conventional problem 
in heat conduction and, therefore, permits ready comparison 
with results for simultaneous conductive and radiative 
transfer. Exact radiative transfer methods are employed to 
formulate the energy transfer problem and two techniques 
are developed to construct solutions to the governing energy 
equation. 
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ANALYSIS 

Consider a plane parallel layer of a non-scattering gray 
medium confined between uniform temperature black 
planes (see insert in Fig. 1). Postulating a purely radiating 
medium and neglecting ionization and dissociation effects, 
the energy equation for the medium may be written as 

where T, F, t, and x denote the local absolute temperature, 
local radiative flux, time, and space coordinate, respectively. 
The symbols p and c, designate the mass density and the 
constant volume specific heat of the enclosed medium. In 

writing equation (l), plane symmetry has been assumed and 
radiation energy density neglected in comparison to 
molecular energy density. Physically, equation (1) equates 
the instantaneous net radiative energy transport rate to a 
unit volume element to the time rate of increase of the 
molecular energy of the element. For black walls the local 
radiative flux is 

F(r, t) = Za[T;(t) E3(r) - T:(t) J&(7, - 7) 

+ r T4(7’, t) E,(lz - 7’1) sign (7 - 7’) dr’] (2) 
0 

with T,(t) and T,(t) the time dependent temperatures of the 
lower (7 = 0) and upper wall (7 = 7,J. respectively. The 
symbols (r, 7( = KX), and T,,( = KX,,) denote the Stefan 
Boltzmann radiation constant, the optical distance measured 
from the lower wall and the optical thickness of the layer, 
respectively. E,(7) is the well-known exponential integral 
function of order n. Differentiation of the flux expression 
and subsequent substitution into the energy equation gives 

PC,, $ = 2KU 

I 
T:(t) &(7) + T:(t) s&(7, - 7) 

1” 

+ 

J 
T4(7’, t) E,(jt - 7’)) dr’ - 2T4(7, t) 

1 
(3) 

0 

Equation (3) governs the temperature distribution in a 
radiating non-scattering, gray gas confined between black 
walls for arbitrary optical thickness, arbitrary initial 
temperature distribution and arbitrary variation of the 
wall temperatures with time. Solutions are presented later 
for an initial state of uniform temperature Ti when the lower 
wall (7 = 0) undergoes a step increase in temperature to 
T,. The upper wall (7 = 7J remains at the initial temperature 
of the layer. These wall conditions were chosen to correspond 
to the extensive results available [3, 41 for steady radiative 
transfer in a plane layer confined between unequal tempera- 
ture walls. For future reference, the energy and flux equations 
corresponding to the imposed conditions are presented in 
dimensionless form. 

as 
~-~ = +[EZ(7) + O:E,(s, - 7) 
at* 

+ 7 @(r’, t) E,((7 - 7’)) dr’ - 2e4(r, t*,]. 
cl 

(4) 

The initial condition is given by 

e(7.0) = fll. 

The corresponding flux expression is 

F* = f[E3(7) - O~E,(r, - r) 

+ 7 04(7’, t*) E,(l7 - 7’)) sign (7 - 7’) dr’]. 
0 

(5) 

(6) 

The dimensionless variables introduced are defined as 
follows. 

e=$ 
II 

F*=&, 
‘%KIJT~ 

t* = --Ot. (7) 
0 PC,. 

The parameter pc,/~aTz introduced in the dimensionless 
time variable, t*, characterizes the time required to radiate 
the entire internal energy of the medium of temperature 
To at a rate determined by this same temperature. 

NUMERICAL SOLUTION TO THE ENERGY 
EQUATION 

The energy equation (4), is a nonlinear, integro-differential 
equation for which analytical closed form solutions do not 
appear possible and, therefore, numerical methods were 
employed. The numerical solution is complicated by the 
fact that E,(lr - 71) is singular at the origin even though 
the integral exists and is finite. To circumvent this difficulty, 
the integral was evaluated by a functional approximation 
technique. The function 04(r,t*) was approximated by a 
finite expansion in polynomials orthogonal over a set of 
preselected space grid points, distributed in a suitable 
manner in the interval under consideration, Thus 

8%. t*) = i: Bit*) PJT) 
j=O 

(8) 

where PX7) denotes the orthogonal polynomial of order j. 
The orthogonal polynomials were constructed by adapting 
an algorithm suggested by Anderson [S] to the discrete 
situation. The time dependent coefficients B,Jt*) were 
evaluated at each instant of time according to a least- 
squares procedure given by Forsythe [6]. 

Spatial discretization of equation (4) and subsequent 
use of the polynomial approximation yields a system of 
simultaneous ordinary differential equations with the initial 
condition prescribed by equation (5). Standard numerical 
integration techniques were employed to numerically 
solve the resulting set of equations [7]. The accuracy of 
the solution method was investigated by independent 
error studies of the least squares polynomial approxima- 
tion and the numerical integration technique. Comparisons 
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to reported steady state results [4] showed agreement to 
better than 1 per cent in most cases investigated. The tran- 
sient results are estimated to be at least of this accuracy. 

RESULTS AND DISCUSSION 

Transient temperature and flux distributions have been 
evaluated for a medium initially at a uniform temperature 
Ti when the temperature of the lower black wall is suddenly 
increased to and thereafter maintained at temperature T,. 
The upper wall remains at the initial temperature Ti. The 
dimensionless temperature distribution at each instant of 
dimensionless time t* depends on the optical thickness T,, 
and the temperature ratio 0i. Since 8i is the ratio of cold 
wall to hot wall temperature, a decrease in 0, for fixed 
initial temperature corresponds to an increase in tempera- 
ture change of the hot wall. A convenient presentation of 
results is afforded by the dimensionless variables 0 and 9 
defined by 

e=94-e 4F* 

1 -et’ 
%=---. 

l-8 
(91 

Both 0 and 9F are independent of 0, at steady state and 
available steady state results [3, 41 are presented in terms 
of these quantities. At steady state 9 is uniform across the 
layer and 0 is asymmetric about the mid-plane. 

The influence of optical thickness on the temperature 
and flux distributions during heating is illustrated in Fig. 1 
for a 0, value of 05. Distributions are presented at selected 
values of dimensionless time for optical thickness values of 
0.1, 1.0 and 10.0. The phenomenon of temperature slip 
is evident in all temperature distributions and is attributed 
to the absence of any molecular transport mechanism, 
such as heat conduction, which requires temperature 
continuity at the wall-gas boundary. For the smallest 
value of optical thickness, r,, = 01, the temperature and 
flux distributions are nearly uniform across the layer and, 
furthermore, the radiant flux is large. These characteristics 
point to the approach of the layer to the optically thin 
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FIG. 1. Effect of optical thickness on temperature and flux 
distributions; 0, = 05. 
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limit (r,, 6 1) at which the temperature throughout the 
layer uniformly changes with time and flux is constant at 
a value near unity. On the other hand, the temperature and 
flux distributions for re = I@0 exhibit large gradients and 
are reminiscent of those commonly observed in transient 
diffusion phenomena. These characteristics are attributed 
to the fact that at t0 = IO,0 the layer is approaching the 
optically thick limit (ra & I) where each gas volume is 
significantly influenced only by its immediate neighbors 
and, consequently, the radiative transfer process acquires 
a diffusive character. The distributions for r0 = 1.0 display 
characteristics intermediate to those for the smaher and the 
larger optical thickness values. 

The response of the medium to the change in wall tem- 
perature is illustrated by the results presented in Figs. 2 and 
3. There is shown the variation with time of boundary 
temperatures and fluxes, respectively, for Br = 05 The 
trends of increasing non-uniformity in temperature and 

og /p!.___s.L___________-_-____$ 
0 I I/‘- I/ c 0.1 

0,4 ’ 
,cc_______-------_____--_____ 

A’ i 

FIG. 2. Effect of optical thickness on time variation of 
boundary temperatures; 8, = 05. 

Fro. 3. Effect of optical thickness on time variation of 

boundary fluxes ; Or = 0.5. 

diminishing flux values with increasmg optical thickness 
are also evident here. It may be observed that the response 
of both temperature and flux for the smaller optical thickness 
vafues is of the same order while that for r0 = I@0 is 
slower by an order of magnitude. Furthermore. while 
temperature and fiux at both boundaries for r0 = 0.1 and 
1.0 respond immediately to the wall temperature change, 
a considerable time elapses for r,, = 10.0 before the tem- 
perature and flux at the cold boundary show any significant 
change from their initial value. This points to the large 
impedance to radiant energy transfer inherent in the 

o 
r/r, 

FIG. 4. Effect oft+ on temperature distributions : Q = 13. 
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FIG. 5. Effect of 9, on flux distributions; r0 = 1-O. 
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diffusion mechanism dominant at 5,, = l@O. Finally, the 
results of these figures clearly establish that, in dimension- 
less time t*, the layer with the smallest value of optical 
thickness heats the fastest and the response of the medium 
is retarded as the optical thickness of the layer increases. 

The influence of the magnitude of the wall temperature 
change on temperature and flux distributions is illustrated 
in Figs. 4 and 5 at selected times for an optical thickness 
value ofunity. As expected, the e1 value does not significantly 
affect the general characteristics of the temperature and flux 
distributions and this observation holds also for the results 
at other values of optical thickness. The effect of an increase 
in temperature change of the lower wall for fixed initial 
layer temperature is a retardation of the response of the 
medium to the driving flux. This is clearly demonstrated 
in Fig. 6 where the variation with time of the boundary 
temperature and fluxes is shown for 7,, = 1.0. 

0.8 

0.6 

E1 0 

0.4 

0 
0 4.0 8.0 12.0 

f” 

FIG. 6. Effect of O1 on time variation of boundary tempera- 
tures and boundary fluxes ; T,, = 1.0. 

The previous discussion concerning the influence of the 
dimensionless parameters 70 and e1 on the transient 
heating of the layer was based on the dimensionless time 
variable t*. It is important to interpret the trends in terms 
of physical time t. For this purpose consider a gas layer of 
fixed thermal properties (p, cJ, fixed physical thickness (x,,), 
and fixed initial temperature (T1). Then ta(@*/T,) and 
inspection of the foregoing results in light of this relation 
reveals the following. First, on a real time basis, an increase 
in the temperature change of the lower wall for a fixed 
value of optical thickness increases the response rate of the 
layer. On physical grounds, this trend is quite plausible. 
Second, the layer with optical thickness unity heats fastest 
and the layer with optical thickness 0.1 heats slowest. The 
heating is slower for z0 = 0.1 than for Q = 1.0 because the 
former has a relatively lower absorption coefficient and 
therefore absorbs comparitively less energy. On the other 
hand, the diffusion mechanism dominant at 7,, = 10.0 is 
inherently a slow transport process in comparison to the 

global interaction mechanism prevailing at 7. = 1.0. It is 
somewhat surprising, however, to find that the time required 
to attain steady state conditions is considerably less for the 
diffusion process at large optical thickness than that for 
70 = 01. This must be attributed to the lack of significant 
interaction between the radiation and matter at the low 
value of optical thickness. 

SOLUTION BY THE METHOD OF MOMENTS 

The numerical method of solution to equation (4) pre- 
sented earlier is accurate but requires a large amount of 
computation time. It is therefore, desirable to seek other 
methods of solution which can yield results with less 
effort at the expense of some accuracy. The method of 
moments is an approximate technique which has enjoyed 
some success and when applied to the problem at hand 
significantly reduces the computational effort. The method is 
variational in character and has been discussed in detail 
with regard to the determination of approximate solutions 
to integral equations [8,9] and nonlinear partial differential 
equations [lo]. 

It is convenient for the present purpose to compactly 
write equation (4) in the form 

L[e(& t*H - f(T) = 0 (10) 

where the operator L and function fare defined as follows. 

10 

5 
e4(7:t*)q7 - 7'1) d7’ 

0 

+ e4t7, t*) (11) 

f(7) = fw7) + e:m7, - 7~1. 

The initial condition is equation (5). 
An approximate solution to the energy equation, 447, t*), 

is sought in the following form 

~(7, t*) = $ 4,(t*) 7j 
j=O 

where the 4,@*) are as yet undetermined functions. A 
residual, R[4,Jt*), 71, corresponding to the assumed solu- 
tion is defined as 

R[4#*), 71 = uq7, t*)l - f(7). (13) 

From a comparison of equations (13) and (10) it follows 
that the residual is generally.non-vanishing in the domain 
of integration except for the exact solution. The functions 
4,Jt*) are now chosen to make the residual small in some 
sense. For this purpose the method of moments requires 
the first N + 1 moments of the residual to vanish; that is, 
we require that 

% r’R[4&*), 71 ds = 0 (i = 0, 1,2,. , N). (14) 
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This procedure generates a system of N + 1 simultaneous 
nonlinear ordinary differential equations for the 4,(t*) 
which may be written as 

where 

a.. = T;++j+l/(i + j + 1) 
V 

Cij = :y ri ds ‘s” (z’Y’E,(lz - ~‘1) dt’ - aij (16) 
0 0 

Fi = y TV dz. 
0 

The coefficients aij and C, depend only on optical thickness 
of the medium while Fi depends on both optical thickness 
and 19~. The integrals in C, and Fi may be evaluated, in 
closed form and the results expressed in terms of exponential 
integral functions of orders higher than unity. Thus, the 
singularity present in equation (4) is eliminated. The result- 
ing lengthy expressions are available elsewhere [7] and 
are not presented here. The functions denoted U,(t*) are 
combinations of the 4Jt*) and are defined by the following 
relation 

The initial conditions for +j can be determined by a similar 
procedure applied to equation (5). In the present applica- 
tion, however, they may be written by inspection ofequations 
(12) and (5) as 

&(O) = 01, &JO) = 0 0’ = 1.2,. . , N). (18) 

The system of equations expressed by equation (15) with 
the initial conditions above were numerically integrated 
and solutions were obtained with five to six times less 
computation time than that required for the numerical 
solution. 

COMPARISON OF RESULTS 

Temperature distributions were evaluated using the 
moment method with N = 4. A marked improvement in 
accuracy was observed when N was increased from 3 to 4, 
but very little thereafter. The moment method failed to give 
physically meaningful solutions for r,, > 5. This failure is 
attributed to the choice of power functions (~3 to describe 
the spatial dependence of temperature. At large optical 
thickness values, the temperature variation with distance 
is exponential in character and cannot be adequately 
approximated by the selected functions. The errors intro- 
duced by the approximation are sufficient to cause an 
unstable numerical integration. The results obtained for 

the temperature and flux distributions with z,, < 2, however, 
exhibited all the features previously discussed in connection 
with the numerical solution and, therefore, we turn our 
attention to the accuracy of the moment results. 

The accuracy of the moment results for temperature and 
flux was investigated by comparison of the results to those 
evaluated by the numerical method. Figure 7 shows the 

6 1 / I I 12 

L-4 

-4 c To = 1.0 
iI- 

--- t* = 0.02 

4- ___-_1*=2.5g -8 

pt*=5.15 , 
----- Steady state 

2- 

i 

-60 O-2 I 0.4 1 0:s 0.8 I 1.0 -12 

r/r, 

FIG. 7. Typical error in temperature by moment method; 
50 = 1.0, 8, = 0.5. 

typical per cent error in local temperature at selected 
values of t* for 5,, = 1.0. This figure indicates that the 
moment results at each instant of time oscillated about 
the numerical result. Except at very early times when the 
cold boundary usually exhibited low temperatures, the 
moment results gave low temperature values at the hot 
boundary and high temperature values at the cold boundary. 
Although the cold boundary temperature at early times was 
sometimes in error by a factor of two, the accuracy of the 
moment results improved as time progressed and generally 
showed agreement within 1 per cent at interior points and 
intermediate times. The greatest temperature errors occurred 
at the boundaries with discrepancies of over 8 per cent 
at steady state. The accuracy of the moment results for 
temperature were not significantly affected by the value of el. 
The most accurate results for temperature were obtained at 
an optical thickness value of unity, the exceptions being the 
cold boundary temperature and early time results. The 
radiant flux distributions evaluated with the moment 
method temperature distributions showed agreement with 
those of the numerical solution to four significant Rgures 
in almost all cases investigated. 
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